首页> 外文OA文献 >Brain Age Prediction Based on Resting-State Functional Connectivity Patterns Using Convolutional Neural Networks
【2h】

Brain Age Prediction Based on Resting-State Functional Connectivity Patterns Using Convolutional Neural Networks

机译:基于静止状态功能连接的脑年龄预测   使用卷积神经网络的模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain age prediction based on neuroimaging data could help characterize boththe typical brain development and neuropsychiatric disorders. Patternrecognition models built upon functional connectivity (FC) measures derivedfrom resting state fMRI (rsfMRI) data have been successfully used to predictthe brain age. However, most existing studies focus on coarse-grained FCmeasures between brain regions or intrinsic connectivity networks (ICNs), whichmay sacrifice fine-grained FC information of the rsfMRI data. Whole brainvoxel-wise FC measures could provide fine-grained FC information of the brainand may improve the prediction performance. In this study, we develop a deeplearning method to use convolutional neural networks (CNNs) to learninformative features from the fine-grained whole brain FC measures for thebrain age prediction. Experimental results on a large dataset of resting-statefMRI demonstrate that the deep learning model with fine-grained FC measurescould better predict the brain age.
机译:基于神经影像数据的大脑年龄预测可以帮助表征典型的大脑发育和神经精神疾病。基于从静息状态功能磁共振成像(rsfMRI)数据得出的功能连通性(FC)度量建立的模式识别模型已成功用于预测大脑年龄。但是,大多数现有研究集中在大脑区域或内在连接网络(ICN)之间的粗粒度FC测量,这可能会牺牲rsfMRI数据的细粒度FC信息。全脑素FC方法可以提供大脑的细粒度FC信息,并可以改善预测性能。在这项研究中,我们开发了一种深度学习方法,可使用卷积神经网络(CNN)从细粒度全脑FC量度中获取信息特征,以预测大脑年龄。在大量静止状态fMRI数据集上的实验结果表明,具有细粒度FC措施的深度学习模型可以更好地预测大脑年龄。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号